Program Listing for File so3.hpp
↰ Return to documentation for file (include/fast_gicp/so3/so3.hpp)
#ifndef FAST_GICP_SO3_HPP
#define FAST_GICP_SO3_HPP
#include <Eigen/Core>
#include <Eigen/Geometry>
namespace fast_gicp {
inline Eigen::Matrix3f skew(const Eigen::Vector3f& x) {
Eigen::Matrix3f skew = Eigen::Matrix3f::Zero();
skew(0, 1) = -x[2];
skew(0, 2) = x[1];
skew(1, 0) = x[2];
skew(1, 2) = -x[0];
skew(2, 0) = -x[1];
skew(2, 1) = x[0];
return skew;
}
inline Eigen::Matrix3d skewd(const Eigen::Vector3d& x) {
Eigen::Matrix3d skew = Eigen::Matrix3d::Zero();
skew(0, 1) = -x[2];
skew(0, 2) = x[1];
skew(1, 0) = x[2];
skew(1, 2) = -x[0];
skew(2, 0) = -x[1];
skew(2, 1) = x[0];
return skew;
}
/*
* SO3 expmap code taken from Sophus
* https://github.com/strasdat/Sophus/blob/593db47500ea1a2de5f0e6579c86147991509c59/sophus/so3.hpp#L585
*
* Copyright 2011-2017 Hauke Strasdat
* 2012-2017 Steven Lovegrove
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
inline Eigen::Quaterniond so3_exp(const Eigen::Vector3d& omega) {
double theta_sq = omega.dot(omega);
double theta;
double imag_factor;
double real_factor;
if (theta_sq < 1e-10) {
theta = 0;
double theta_quad = theta_sq * theta_sq;
imag_factor = 0.5 - 1.0 / 48.0 * theta_sq + 1.0 / 3840.0 * theta_quad;
real_factor = 1.0 - 1.0 / 8.0 * theta_sq + 1.0 / 384.0 * theta_quad;
} else {
theta = std::sqrt(theta_sq);
double half_theta = 0.5 * theta;
imag_factor = std::sin(half_theta) / theta;
real_factor = std::cos(half_theta);
}
return Eigen::Quaterniond(real_factor, imag_factor * omega.x(), imag_factor * omega.y(), imag_factor * omega.z());
}
// Rotation-first
inline Eigen::Isometry3d se3_exp(const Eigen::Matrix<double, 6, 1>& a) {
using std::cos;
using std::sin;
const Eigen::Vector3d omega = a.head<3>();
double theta = std::sqrt(omega.dot(omega));
const Eigen::Quaterniond so3 = so3_exp(omega);
const Eigen::Matrix3d Omega = skewd(omega);
const Eigen::Matrix3d Omega_sq = Omega * Omega;
Eigen::Matrix3d V;
if (theta < 1e-10) {
V = so3.matrix();
} else {
const double theta_sq = theta * theta;
V = (Eigen::Matrix3d::Identity() + (1.0 - cos(theta)) / (theta_sq)*Omega + (theta - sin(theta)) / (theta_sq * theta) * Omega_sq);
}
Eigen::Isometry3d se3 = Eigen::Isometry3d::Identity();
se3.linear() = so3.toRotationMatrix();
se3.translation() = V * a.tail<3>();
return se3;
}
} // namespace fast_gicp
#endif